System Identification Using Intelligent Algorithms
نویسندگان
چکیده
Abstract: This research presents an investigation into the development of system identification using intelligent algorithms. A simulation platform of a flexible beam vibration using finite difference (FD) method is used to demonstrate the capabilities of the identification algorithms. A number of approaches and algorithms for system identifications are explored and evaluated. These identification approaches using (a) traditional Recursive Least Square (RLS) filter, (b) Genetic Algorithms (GAs) (c) Adaptive Neuro_Fuzzy Inference System (ANFIS) model (d) General Regression Neural Network (GRNN) and (e)Bees Algorithm (BA). The above algorithms are used to estimate a linear discrete second order model for the flexible beam vibration. The model is implemented, tested and validated to evaluate and demonstrate the merits of the algorithms for system identification. Finally, a comparative performance of error convergence of the algorithms is presented and discussed.
منابع مشابه
Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کاملAn Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants
Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identif...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملDesigning an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملDesign and Implementation of an Intelligent Photogrammetric System for Control and Guidance of Reconstructive Surgery
The digital image contains efficient and useful information which enables measurement and data acquisition. One of the methods that facilitate measuring and interpreting objects, using the image solely, is close-range photogrammetry. Among the various fields of science, whenever a precise measurement is required, this approach can be applied. One of these fields is Medical Sciences that due to ...
متن کامل